சுருக்கம்

Face detection based on conditional random fields

Huachun Yang


To address the local occlusion and pose variation in face detection, face can be looked on as a whole composed of several parts from up to down. First, the face is divided into a number of local regions from which various features are extracted. Each region is identified by a local classifier and is assigned a preliminary part label. A random field is established based on these labels and multiple dependencies between different parts are modeled in a CRF framework. The probability that the test image may be a face is calculated by a trained CRF model. The probability is used as a measure to test the existence of a face. The experiments were carried out on the CMU/MIT dataset. As indicated by the experiment results, the following methods can improve the detection rate and enhance the robustness of face detection in case of occlusion: 1) integrating multiple features and multiple dependencies in CRF framework; 2) dividing the face optimally.


மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

குறியிடப்பட்டது

  • CASS
  • கூகுள் ஸ்காலர்
  • ஜே கேட் திறக்கவும்
  • சீனாவின் தேசிய அறிவு உள்கட்டமைப்பு (CNKI)
  • CiteFactor
  • காஸ்மோஸ் IF
  • டைரக்டரி ஆஃப் ரிசர்ச் ஜர்னல் இன்டெக்சிங் (DRJI)
  • ரகசிய தேடுபொறி ஆய்வகங்கள்
  • யூரோ பப்
  • ICMJE

மேலும் பார்க்க

ஜர்னல் எச்-இண்டெக்ஸ்

Flyer